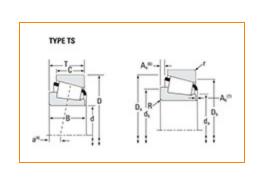


The Timken Company

4500 Mt Pleasant St. NW N. Canton, OH 44720


Phone: (234) 262-3000

E-Mail: <u>CustomerCAD@timken.com</u> • Web site: <u>www.timken.com</u>

Part Number LM67048 - LM67010, Tapered Roller Bearings - TS (Tapered Single) Imperial

This is the most basic and most widely used type of tapered roller bearing. It consists of two main separable parts: the cone (inner ring) assembly and the cup (outer ring). It is typically mounted in opposing pairs on a shaft.

<u>Specifications</u> | <u>Dimensions</u> | <u>Abutment and Fillet Dimensions</u> | <u>Basic Load Ratings</u> | <u>Factors</u>

Spe	Specifications -		
	Series	LM67000	
	Cone Part Number	LM67048	
	Cup Part Number	LM67010	
	Design Unit	Inch	
	Cage Material	Stamped Steel	
	Related Assembly Number(s)	LM67048-90012	
	Related Assembly Number(s)	LM67048-90012	

Dimensions		-
- Bore	1 1/4 in 31.750 mm	

D - Cup Outer Diameter	2.3280 in 59.131 mm
B - Cone Width	0.6600 in 16.764 mm
C - Cup Width	0.4650 in 11.811 mm
T - Bearing Width	0.6250 in 15.875 mm

Abutment and Fillet Dimensions -		
	R - Cone Backface "To Clear" Radius ¹	0.14 in 3.600 mm
	r - Cup Backface "To Clear" Radius ²	0.050 in 1.27 mm
	da - Cone Frontface Backing Diameter	1.42 in 36 mm
	db - Cone Backface Backing Diameter	1.67 in 42.5 mm
	Da - Cup Frontface Backing Diameter	2.24 in 55.90 mm
	Db - Cup Backface Backing Diameter	2.05 in 52.07 mm
	Ab - Cage-Cone Frontface Clearance	0.05 in 1.3 mm
	Aa - Cage-Cone Backface Clearance	0.01 in 0.3 mm
	a - Effective Center Location ³	-0.12 in -3 mm

Basic Load Ratings

C90 - Dynamic Radial Rating (90 million revolutions) ⁴	2720 lbf 12100 N
C1 - Dynamic Radial Rating (1 million revolutions) ⁵	10500 lbf 46700 N
C0 - Static Radial Rating	10000 lbf 44600 N
C _{a90} - Dynamic Thrust Rating (90 million revolutions) ⁶	1920 lbf 8550 N

Fac	Factors -		
	K - Factor ⁷	1.42	
	e - ISO Factor ⁸	0.41	
	Y - ISO Factor ⁹	1.46	
	G1 - Heat Generation Factor (Roller-Raceway)	12.8	
	G2 - Heat Generation Factor (Rib-Roller End)	9.93	
	Cg - Geometry Factor ¹⁰	0.0612	

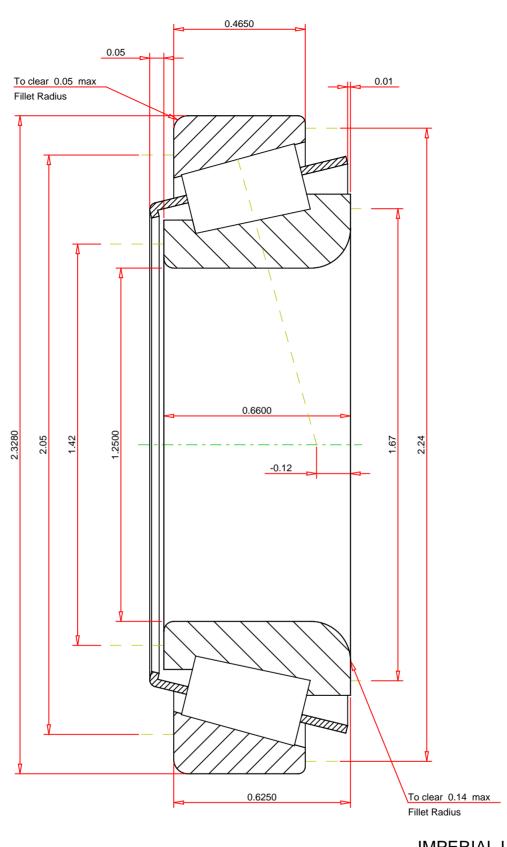
¹ These maximum fillet radii will be cleared by the bearing corners.

² These maximum fillet radii will be cleared by the bearing corners.

³ Negative value indicates effective center inside cone backface.

 $^{^4}$ Based on 90 x 10 6 revolutions L $_{10}$ life, for The Timken Company life calculation method. C $_{90}$ and C $_{a90}$ are radial and thrust values.

 $^{^{5}}$ Based on 1 x 10^{6} revolutions L $_{10}$ life, for the ISO life calculation method.


 $^{^6}$ Based on 90 x 10^6 revolutions L $_{10}$ life, for The Timken Company life calculation method. C $_{90}$ and C $_{a90}$ are radial and thrust values for a single-row, C $_{90(2)}$ is the two-row radial value.

⁷ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

⁸ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

¹⁰ Geometry constant for Lubrication Life Adjustment Factor a3l.

⁹ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

IMPERIAL UNITS

ISO Factor - e	0.41		_
ISO Factor - Y	1.46		
Bearing Weight	0.4	lb	
Number of Rollers Per Row	19		
Effective Center Location	-0.12	inch	

THE TIMKEN COMPANY NORTH CANTON, OHIO USA

LM67048 - LM67010

Tapered Roller Bearings - TS (Tapered Single) Imperial

K Factor	1.42	
Dynamic Radial Rating - C90	2720	lbf
Dynamic Thrust Rating - Ca90	1920	lbf
Static Radial Rating - C0	10000	lbf
Dynamic Radial Rating - C1	10500	lbf

Every reasonable effort has been made to ensure the accuracy of the information contained in this writing, but no liability is accepted for errors, omissions or for any other reason.

FOR DISCUSSION ONLY