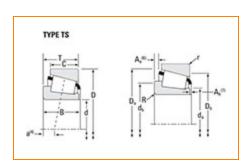


#### The Timken Company 4500 Mt Pleasant St. NW N. Canton, OH 44720

Phone: (234) 262-3000


E-Mail: <u>CustomerCAD@timken.com</u> • Web site: <u>www.timken.com</u>

Part Number HM903245 - HM903210, Tapered Roller Bearings - TS (Tapered Single)

## Imperial

This is the most basic and most widely used type of tapered roller bearing. It consists of two main separable parts: the cone (inner ring) assembly and the cup (outer ring). It is typically mounted in opposing pairs on a shaft.





### <u>Specifications</u> | <u>Dimensions</u> | <u>Abutment and Fillet Dimensions</u> | <u>Basic Load Ratings</u> | <u>Factors</u>

| Specifications - |                  |                   |
|------------------|------------------|-------------------|
|                  | Series           | HM903200          |
|                  | Cone Part Number | HM903245          |
|                  | Cup Part Number  | HM903210          |
|                  | Design Units     | Imperial          |
|                  | Bearing Weight   | 1.00 Kg<br>2.3 lb |
|                  | Cage Type        | Stamped Steel     |

| Dimensions |           | - |
|------------|-----------|---|
|            | 41 275 mm |   |

| d - Bore               | 1.6250 in              |
|------------------------|------------------------|
| D - Cup Outer Diameter | 95.250 mm<br>3.7500 in |
| B - Cone Width         | 28.575 mm<br>1.1250 in |
| C - Cup Width          | 22.225 mm<br>0.8750 in |
| T - Bearing Width      | 30.958 mm<br>1.2188 in |

# Abutment and Fillet Dimensions

| R - Cone Backface "To Clear" Radius <sup>1</sup> | 3.560 mm<br>0.14 in |
|--------------------------------------------------|---------------------|
| r - Cup Backface "To Clear"                      | 0.76 mm             |
| Radius <sup>2</sup>                              | 0.03 in             |
| da - Cone Frontface Backing                      | 54.10 mm            |
| Diameter                                         | 2.13 in             |
| db - Cone Backface Backing                       | 62.99 mm            |
| Diameter                                         | 2.48 in             |
| Da - Cup Frontface Backing                       | 91.90 mm            |
| Diameter                                         | 3.62 in             |
| Db - Cup Backface Backing                        | 81.03 mm            |
| Diameter                                         | 3.19 in             |
| Ab - Cage-Cone Frontface                         | 2.8 mm              |
| Clearance                                        | 0.11 in             |
| Aa - Cage-Cone Backface                          | 3 mm                |
| Clearance                                        | 0.12 in             |
| a - Effective Center Location <sup>3</sup>       | 0.5 mm<br>0.02 in   |
|                                                  |                     |

| Basic Load Ratings -                                                           |                       |  |  |
|--------------------------------------------------------------------------------|-----------------------|--|--|
| C90 - Dynamic Radial Rating (90 million revolutions) <sup>4</sup>              | 7950 lbf<br>35400 N   |  |  |
| C1 - Dynamic Radial Rating (1 million revolutions) <sup>5</sup>                | 30700 lbf<br>136000 N |  |  |
| CO - Static Radial Rating                                                      | 29700 lbf<br>132000 N |  |  |
| C <sub>a90</sub> - Dynamic Thrust Rating (90 million revolutions) <sup>6</sup> | 10100 lbf<br>44800 N  |  |  |

| Factors - |                                                 |       |  |
|-----------|-------------------------------------------------|-------|--|
|           | K - Factor <sup>7</sup>                         | 0.79  |  |
|           | e - ISO Factor <sup>8</sup>                     | 0.74  |  |
|           | Y - ISO Factor <sup>9</sup>                     | 0.81  |  |
|           | G1 - Heat Generation Factor (Roller-Raceway)    | 33.7  |  |
|           | G2 - Heat Generation Factor<br>(Rib-Roller End) | 9.91  |  |
|           | Cg - Geometry Factor <sup>10</sup>              | 0.101 |  |

<sup>&</sup>lt;sup>1</sup> These maximum fillet radii will be cleared by the bearing corners.

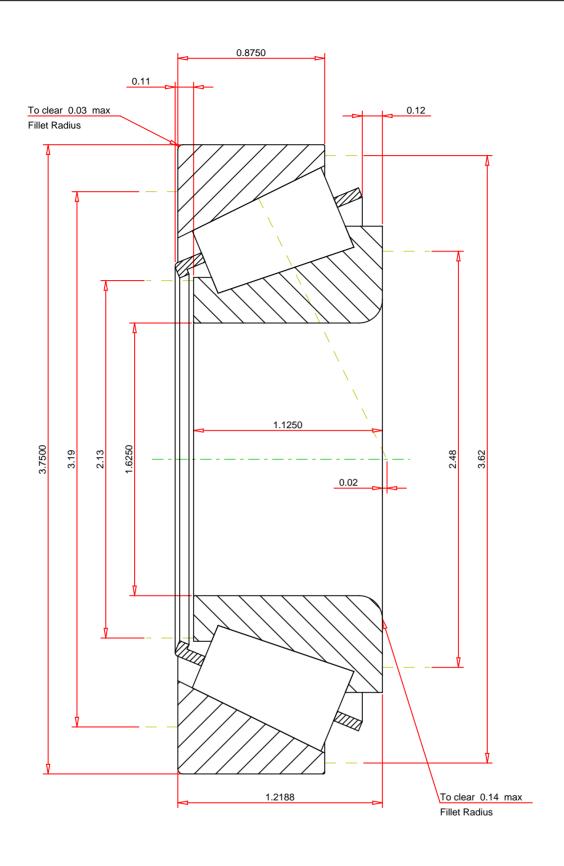
 $<sup>^2</sup>$  These maximum fillet radii will be cleared by the bearing corners.

<sup>&</sup>lt;sup>3</sup> Negative value indicates effective center inside cone backface.

 $<sup>^4</sup>$  Based on 90 x  $10^6$  revolutions L $_{10}$  life, for The Timken Company life calculation method. C $_{90}$  and C $_{a90}$  are radial and thrust values.

 $<sup>^{5}</sup>$  Based on 1 x  $10^{6}$  revolutions L $_{10}$  life, for the ISO life calculation method.

 $<sup>^6</sup>$  Based on 90 x  $10^6$  revolutions  $L_{10}$  life, for The Timken Company life calculation method.  $C_{90}$  and  $C_{a90}$  are radial and thrust values for a single-row,  $C_{90(2)}$  is the two-row radial value.


<sup>&</sup>lt;sup>7</sup> These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

 $<sup>^{8}</sup>$  These factors apply for both inch and metric calculations. Consult your Timken representative for

instruction on use.

 $<sup>^{9}</sup>$  These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

 $<sup>^{10}</sup>$  Geometry constant for Lubrication Life Adjustment Factor a3l.



#### **IMPERIAL UNITS**

HM903245 - HM903210 TS BEARING ASSEMBLY

| ISO Factor - e            | 0.74 |      |  |
|---------------------------|------|------|--|
| ISO Factor - Y            | 0.81 |      |  |
| Bearing Weight            | 2.3  | lb   |  |
| Number of Rollers Per Row | 16   |      |  |
| Effective Center Location | 0.02 | inch |  |
|                           |      |      |  |

THE TIMKEN COMPANY NORTH CANTON, OHIO USA

0.79 Dynamic Radial Rating - C90 7950 Dynamic Thrust Rating - Ca90 10100 lbf Static Radial Rating - C0 29700 Dynamic Radial Rating - C1 30700

Every reasonable effort has been made to ensure the accuracy of the information contained in this writing, but no liability is accepted for errors, omissions or for any other reason.

FOR DISCUSSION ONLY