The Timken Company 4500 Mt Pleasant St. NW N. Canton, OH 44720 Phone: (234) 262-3000 E-Mail: <u>CustomerCAD@timken.com</u> • Web site: <u>www.timken.com</u> ## Part Number 64432, Tapered Roller Bearings - Single Cones - Imperial This is the most basic and most widely used type of tapered roller bearing. It consists of two main separable parts: the cone (inner ring) assembly and the cup (outer ring). It is typically mounted in opposing pairs on a shaft. ## <u>Specifications</u> | <u>Dimensions</u> | <u>Abutment and Fillet Dimensions</u> | <u>Basic Load Ratings</u> | <u>Factors</u> | Spe | cifications | - | |-----|---|------------------------| | | Series | 64000 | | | Cone Part Number | 64432 | | | Design Units | Imperial | | | Cage Type | Stamped Steel | | | C1 - Dynamic Radial Rating
(Two-Row, 1 million
revolutions) ¹ | 108000 lbf
478000 N | | | C90(2) - Dynamic Radial Rating
(Two-Row, 90 million
revolutions) ² | 27900 lbf
124000 N | | | revolutions) ² | 12.000. | Dimensions | d - Bore | 4.3297 in
109.974 mm | |----------------|-------------------------| | B - Cone Width | 1.6250 in
41.275 mm | | Abı | utment and Fillet Dimensions | | - | |-----|---|---------------------|---| | | R - Cone Backface "To Clear"
Radius ³ | 0.14 in
3.600 mm | | | | da - Cone Frontface Backing
Diameter | 4.76 in
121 mm | | | | db - Cone Backface Backing
Diameter | 5.04 in
128 mm | | | | Ab - Cage-Cone Frontface
Clearance | 0.11 in
2.8 mm | | | | Aa - Cage-Cone Backface
Clearance | 0.2 in
5.1 mm | | | | a - Effective Center Location ⁴ | 0.05 in
1.3 mm | | | Bas | ic Load Ratings | - | | |-----|---|-----------------------|--| | | C90 - Dynamic Radial Rating (90 million revolutions) ⁵ | 16000 lbf
71200 N | | | | C1 - Dynamic Radial Rating (1 million revolutions) ⁶ | 61800 lbf
275000 N | | | | CO - Static Radial Rating | 94200 lbf
419000 N | | | | C _{a90} - Dynamic Thrust Rating
(90 million revolutions) ⁷ | 14100 lbf
62900 N | | Factors | K - Factor ⁸ | 1.13 | |---|-------| | G1 - Heat Generation Factor (Roller-Raceway) | 218.8 | | G2 - Heat Generation Factor
(Rib-Roller End) | 45.3 | | Cg - Geometry Factor 9 | 0.115 | | | | $^{^{1}\,\}text{Based}$ on 1 x $10^{6}\,\text{revolutions}\,L_{10}\,\text{life},$ for the ISO life calculation method. $^{^2}$ Based on 90 x 10^6 revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and C_{a90} are radial and thrust values for a single-row, $C_{90(2)}$ is the two-row radial value. $^{^{3}}$ These maximum fillet radii will be cleared by the bearing corners. ⁴ Negative value indicates effective center inside cone backface. $^{^{5}}$ Based on 90 x 10^{6} revolutions L $_{10}$ life, for The Timken Company life calculation method. C $_{90}$ and C $_{a90}$ are radial and thrust values. $^{^{6}}$ Based on 1 x 10^{6} revolutions L_{10} life, for the ISO life calculation method. $^{^7}$ Based on 90 x 10^6 revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and C_{a90} are radial and thrust values for a single-row, $C_{90(2)}$ is the two-row radial value. $^{^{8}}$ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use. ⁹ Geometry constant for Lubrication Life Adjustment Factor a3l. ## **IMPERIAL UNITS** Number of Rollers Per Row 25 THE TIMKEN COMPANY NORTH CANTON, OHIO USA 64432 SINGLE TAPERED CONE K Factor 1.13 Dynamic Radial Rating - C90 16000 lbf Dynamic Thrust Rating - Ca90 14100 lbf Dynamic Radial Rating - C1 61800 lbf Every reasonable effort has been made to ensure the accuracy of the information contained in this writing, but no liability is accepted for errors, omissions or for any other reason. FOR DISCUSSION ONLY