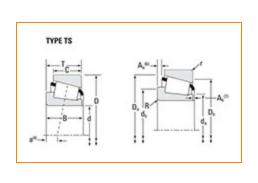


## The Timken Company

4500 Mt Pleasant St. NW N. Canton, OH 44720


**Phone:** (234) 262-3000

E-Mail: CustomerCAD@timken.com • Web site: www.timken.com

## Part Number 3659 - 3620, Tapered Roller Bearings - TS (Tapered Single) Imperial

This is the most basic and most widely used type of tapered roller bearing. It consists of two main separable parts: the cone (inner ring) assembly and the cup (outer ring). It is typically mounted in opposing pairs on a shaft.





## <u>Specifications</u> | <u>Dimensions</u> | <u>Abutment and Fillet Dimensions</u> | <u>Basic Load Ratings</u> | <u>Factors</u>

| Specifications - |                            |               |  |
|------------------|----------------------------|---------------|--|
|                  |                            |               |  |
|                  | Series                     | 3600          |  |
|                  | Cone Part Number           | 3659          |  |
|                  | Cup Part Number            | 3620          |  |
|                  | Design Unit                | Inch          |  |
|                  | Cage Material              | Stamped Steel |  |
|                  | Related Assembly Number(s) | 3659-90010    |  |
|                  |                            |               |  |

| Dimensions |                       | - |
|------------|-----------------------|---|
| - Bore     | 15/16 in<br>23.813 mm |   |

| D - Cup Outer Diameter | 2.4375 in<br>61.913 mm |
|------------------------|------------------------|
| B - Cone Width         | 1.1975 in<br>30.417 mm |
| C - Cup Width          | 0.9375 in<br>23.813 mm |
| T - Bearing Width      | 1.1250 in<br>28.575 mm |

| Αbι | utment and Fillet Dimensions                       |                      | - |
|-----|----------------------------------------------------|----------------------|---|
|     | R - Cone Backface "To Clear" Radius <sup>1</sup>   | 0.09 in<br>2.300 mm  |   |
|     | r - Cup Backface "To Clear"<br>Radius <sup>2</sup> | 0.130 in<br>3.30 mm  |   |
|     | da - Cone Frontface Backing<br>Diameter            | 1.24 in<br>31.5 mm   |   |
|     | db - Cone Backface Backing<br>Diameter             | 1.40 in<br>35.5 mm   |   |
|     | Da - Cup Frontface Backing<br>Diameter             | 2.28 in 57.90 mm     |   |
|     | Db - Cup Backface Backing<br>Diameter              | 2.05 in<br>52.07 mm  |   |
|     | Ab - Cage-Cone Frontface<br>Clearance              | 0.04 in<br>1 mm      |   |
|     | Aa - Cage-Cone Backface<br>Clearance               | 0.05 in<br>1.3 mm    |   |
|     | a - Effective Center Location <sup>3</sup>         | -0.47 in<br>-11.9 mm |   |

Basic Load Ratings

| C90 - Dynamic Radial Rating (90 million revolutions) <sup>4</sup>              | 5160 lbf<br>23000 N  |
|--------------------------------------------------------------------------------|----------------------|
| C1 - Dynamic Radial Rating (1 million revolutions) <sup>5</sup>                | 19900 lbf<br>88600 N |
| C0 - Static Radial Rating                                                      | 20200 lbf<br>89800 N |
| C <sub>a90</sub> - Dynamic Thrust Rating (90 million revolutions) <sup>6</sup> | 2500 lbf<br>11100 N  |

| Factors - |                                    |        |  |
|-----------|------------------------------------|--------|--|
|           | K - Factor <sup>7</sup>            | 2.07   |  |
|           | e - ISO Factor <sup>8</sup>        | 0.28   |  |
|           | Y - ISO Factor <sup>9</sup>        | 2.13   |  |
|           | Cg - Geometry Factor <sup>10</sup> | 0.0592 |  |
|           |                                    |        |  |

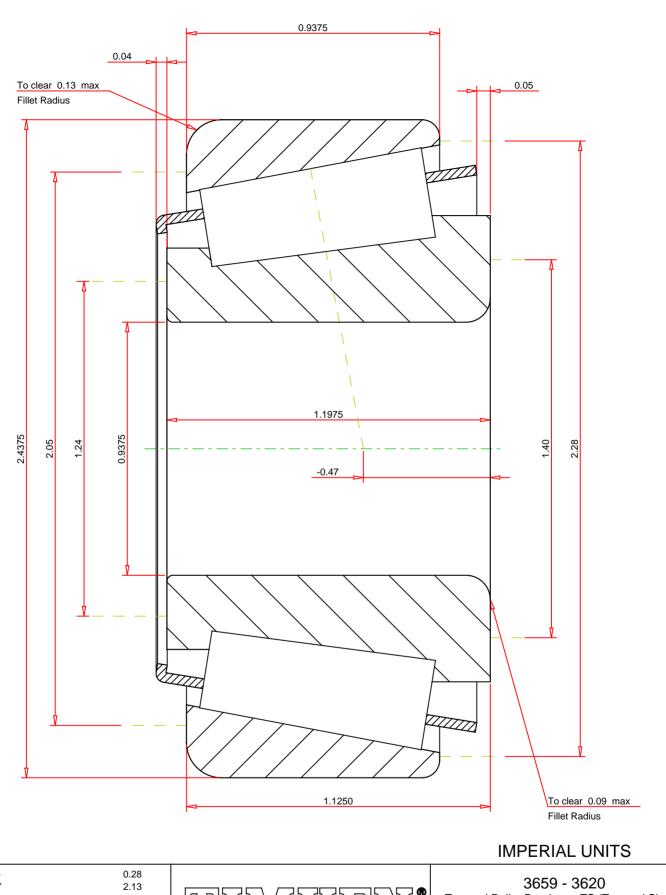
<sup>&</sup>lt;sup>1</sup> These maximum fillet radii will be cleared by the bearing corners.

<sup>&</sup>lt;sup>2</sup> These maximum fillet radii will be cleared by the bearing corners.

 $<sup>^3</sup>$  Negative value indicates effective center inside cone backface.

 $<sup>^4</sup>$  Based on 90 x  $10^6$  revolutions L $_{10}$  life, for The Timken Company life calculation method. C $_{90}$  and C $_{a90}$  are radial and thrust values.

 $<sup>^{5}</sup>$  Based on 1 x  $10^{6}$  revolutions  $L_{10}$  life, for the ISO life calculation method.


 $<sup>^6</sup>$  Based on 90 x  $10^6$  revolutions L $_{10}$  life, for The Timken Company life calculation method. C $_{90}$  and C $_{a90}$  are radial and thrust values for a single-row, C $_{90(2)}$  is the two-row radial value.

<sup>&</sup>lt;sup>7</sup> These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

<sup>&</sup>lt;sup>8</sup> These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

<sup>&</sup>lt;sup>9</sup> These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

<sup>&</sup>lt;sup>10</sup> Geometry constant for Lubrication Life Adjustment Factor a3l.



| ISO Factor - e ISO Factor - Y Bearing Weight Number of Rollers Per Row Effective Center Location | 0.28<br>2.13<br>1 lb<br>12<br>-0.47 inch |                                           | 3659 - 3620<br>Tapered Roller Bearings - TS (Tapered Single)<br>Imperial                                                                         |                         |
|--------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                  |                                          | THE TIMKEN COMPANY NORTH CANTON, OHIO USA | K Factor 2.0  Dynamic Radial Rating - C90 516  Dynamic Thrust Rating - Ca90 250  Static Radial Rating - C0 2020  Dynamic Radial Rating - C1 1990 | 0 lbf<br>0 lbf<br>0 lbf |
|                                                                                                  |                                          |                                           |                                                                                                                                                  |                         |

Every reasonable effort has been made to ensure the accuracy of the information contained in this writing, but no liability is accepted for errors, omissions or for any other reason.

FOR DISCUSSION ONLY