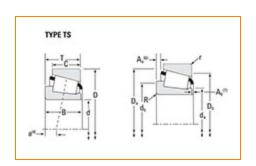


The Timken Company 4500 Mt Pleasant St. NW N. Canton, OH 44720


Phone: (234) 262-3000

E-Mail: <u>CustomerCAD@timken.com</u> • Web site: <u>www.timken.com</u>

Part Number M236849 - M236810, Tapered Roller Bearings - TS (Tapered Single) Imperial

This is the most basic and most widely used type of tapered roller bearing. It consists of two main separable parts: the cone (inner ring) assembly and the cup (outer ring). It is typically mounted in opposing pairs on a shaft.

<u>Specifications</u> | <u>Dimensions</u> | <u>Abutment and Fillet Dimensions</u> | <u>Basic Load Ratings</u> | <u>Factors</u>

Specifications -			
	Series	M236800	
	Cone Part Number	M236849	
	Cup Part Number	M236810	
	Design Units	Imperial	
	Bearing Weight	9.1 Kg 20.1 lb	
	Cage Type	Stamped Steel	

Dimensions		-
d - Bore	177.800 mm 7.0000 in	

D - Cup Outer Diameter	260.350 mm 10.2500 in
B - Cone Width	53.975 mm 2.125 in
C - Cup Width	41.275 mm 1.6250 in
T - Bearing Width	53.975 mm 2.1250 in

Abutment and Fillet Dimensions

R - Cone Backface "To Clear"	3.560 mm
Radius ¹	0.14 in
r - Cup Backface "To Clear"	3.3 mm
Radius ²	0.130 in
da - Cone Frontface Backing	191.01 mm
Diameter	8.58 in
db - Cone Backface Backing	195.07 mm
Diameter	7.68 in
Da - Cup Frontface Backing	249.40 mm
Diameter	9.82 in
Db - Cup Backface Backing	241.05 mm
Diameter	9.49 in
Ab - Cage-Cone Frontface	4.3 mm
Clearance	0.17 in
Aa - Cage-Cone Backface	3.8 mm
Clearance	0.15 in
a - Effective Center Location ³	-6.6 mm -0.26 in

Basic Load Ratings -

C90 - Dynamic Radial Rating (90 million revolutions) ⁴	31300 lbf 139000 N
C1 - Dynamic Radial Rating (1 million revolutions) ⁵	121000 lbf 537000 N
C0 - Static Radial Rating	210000 lbf 933000 N
C _{a90} - Dynamic Thrust Rating (90 million revolutions) ⁶	17800 lbf 79200 N

Factors -			
	K - Factor ⁷	1.76	
	e - ISO Factor ⁸	0.33	
	Y - ISO Factor ⁹	1.8	
	G1 - Heat Generation Factor (Roller-Raceway)	691	
	G2 - Heat Generation Factor (Rib-Roller End)	100	
	Cg - Geometry Factor ¹⁰	0.115	

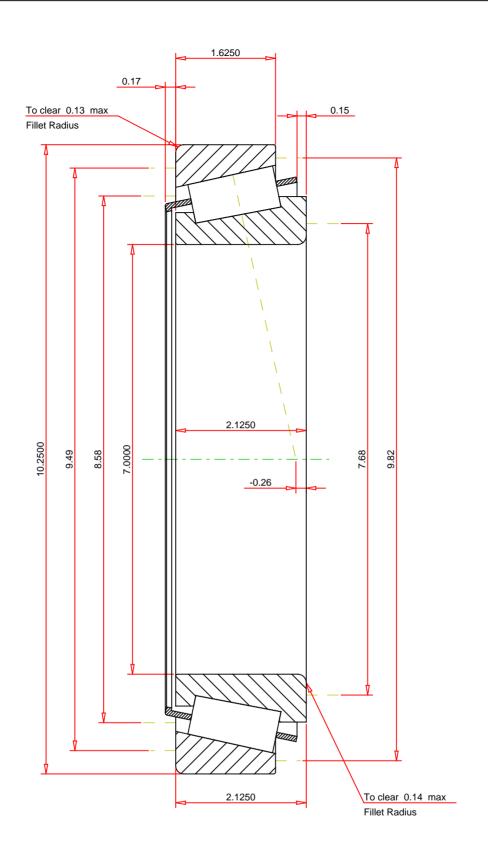
¹ These maximum fillet radii will be cleared by the bearing corners.

² These maximum fillet radii will be cleared by the bearing corners.

³ Negative value indicates effective center inside cone backface.

 $^{^4}$ Based on 90 x 10^6 revolutions L $_{10}$ life, for The Timken Company life calculation method. C $_{90}$ and C $_{a90}$ are radial and thrust values.

 $^{^{5}}$ Based on 1 x 10^{6} revolutions L_{10} life, for the ISO life calculation method.


⁶ Based on 90 x 10⁶ revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and C_{a90} are radial and thrust values for a single-row, $C_{90(2)}$ is the two-row radial value.

⁷ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

⁸ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

⁹ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.

 $^{\rm 10}\,{\rm Geometry}$ constant for Lubrication Life Adjustment Factor a3l.

IMPERIAL UNITS

ISO Factor - e	0.33		
ISO Factor - Y	1.8		
Bearing Weight	20.1	lb	
Number of Rollers Per Row	29		
Effective Center Location	-0.26	inch	

THE TIMKEN COMPANY
NORTH CANTON, OHIO USA

M236849 - M236810 TS BEARING ASSEMBLY

 K Factor
 1.76

 Dynamic Radial Rating - C90
 31300
 lbf

 Dynamic Thrust Rating - Ca90
 17800
 lbf

 Static Radial Rating - C0
 210000
 lbf

 Dynamic Radial Rating - C1
 121000
 lbf

Every reasonable effort has been made to ensure the accuracy of the information contained in this writing, but no liability is accepted for errors, omissions or for any other reason.

FOR DISCUSSION ONLY